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Motivation

● Resting State fMRI measures low frequency fluctuations in BOLD signals

● These signals are used to determine the functional structure of the brain

● RS fMRI has quite a few medical applications such as presurgical planning for brain 

tumour and epilepsy patients and also possibly in the diagnosis of other neurological 

and psychiatric diseases

● The primary application of RS fMRI which is also the focus of this work is the 

determination of Resting State Networks  which are discernable functional 

communities in the brain

● The primary need for undersampling of fMRI signals arises from the fact that 

undersampling can lead to better spatiotemporal resolution which in turn lead to 

improved brain connectivity maps

● Faster acquisition reduces the risk of data corruption due to patient motion and 

allows us to study dynamic networks



Review of Techniques

● The earliest technique which focussed on reducing the time for acquisition is called 

GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition)

● This technique uses the idea of fully-sampled parallel imaging by making use of 

numerous magnetic coils and the properties of their spatial arrangement

● Other classical techniques rely on reconstruction using signal priors and the use of 

Bayesian graphical frameworks to learn data-adaptive prior models

● However, with the recent advances in deep learning and the advent of convolutional 

neural networks, there is a piqued interest in applying them to the problem of 

undersampled reconstruction

● After a brief review of classical techniques, we discuss the various neural networks 

that have been used so far and our own deep learning based approach to the problem



Dictionary Learning Approach

● This is one of the classical techniques that utilize the idea of learning a data-adaptive 

prior model through dictionaries that are designed to be robust to large physiological 

fluctuations that are typical in RS fMRI signals

● A Markov Random Field is used to model the 4D fMRI time series and the dictionary 

is represented as matrix of J columns where each column represents an atom of the 

dictionary

● The possible variations in the time-series underlying the functional maps is modeled 

as a similarity transform which consists of three parts:

○ A constant atom to model shifting

○ Coefficients to model scaling

○ An orthonormal transform to model rotation which is applied to all the 

non-constant atoms corresponding to one subject



Image Reconstruction Formulation

● In addition to the above, a heavier-tailed distribution than the Gaussian is used to 

model the physiological fluctuations and the quasi-norm of the dictionary coefficient 

vectors are penalized to enforce sparsity

● A maximum a posteriori estimate is learned over the training data of fully-sampled 

images to maximize the objective function below

● The above objective is maximized by gradient ascent with adaptive step size that 

ensures the posterior probability increases at each step



K-t FASTER: Low Rank Constraints

● The k-t matrix obtained from the acquisition of MRI data can be modeled to low rank 

(barring the effects of thermal and physiological noise)

● The Matrix Completion problem is studied as an analogue to the Compressed Sensing 

problem where the data is represented in a known basis using a limited number of 

non-zero coefficients

● In Matrix Completion, the idea is to instead enforce low rank and not make use of a 

prespecified basis

● The problem is formulated in terms of a transform that takes the actual image to the 

undersampled k-space data

● A constrained optimization framework is used to obtain the reconstructed image as 

an optimal argument of the norm between the acquired data and the transformation 

of the argument under the constraint of a low-rank for the reconstruction



Hard Thresholding

● The above is achieved using the idea of hard thresholding that is iteratively applied to 

obtain an optimal reconstruction

● This drives all the singular values of the matrix (except a few) to zero, therefore 

enforcing the low rank prior on the result

● The reconstruction error is evaluated using Frobenius norm  and validates the prior

● However, the iterative method is computationally inefficient and requires intensive 

computational power for the large k-t matrices which are common in MRI data



Application of Deep Learning
● With the success of the Deep Learning paradigm to various image processing and 

computer vision tasks, convolutional neural networks were also applied to the 

problem of undersampled MRI reconstruction

● One of the earliest architectures is simply a 3-layer convolutional network which 

learns the mapping between the undersampled image and the reconstruction by the 

use of training data in the k-space

● The architecture also corrects the k-space data which were present in the original 

acquisition but which were overwritten by the output of the neural network by taking 

a convex combination of the acquired value and the neural net output (a technique 

some of the later papers refer to as k-space correction)



Early Architectures

● The architecture is quite simple consisting of vanilla convolutional layers and the 

weight initialization happens from a Gaussian distribution with zero mean and a 

standard deviation of 0.001

● The proposed network performs well and restores several details and fine structures 

to the reconstructed image

● The paper is one of the earliest works documenting the successful application of deep 

neural networks to the task of undersampled MRI reconstruction



Novel Architectures: UNET

● UNET, having successfully been used in several image processing tasks, was also 

applied to the task at hand

● The problem of undersampled reconstruction is again studied as an analogue to 

Compressed Sensing which is formulated as the following constrained optimization 

problem

● The Deep Learning aims to learn a function from the undersampled image to the 

reconstruction through the training samples

● UNET provides a low dimensional latent space representation and the high 

dimensional features are recovered by concatenating feature maps from lower layers 

to the upper layers



Separability Problem

● Sub-Nyquist sampling is employed to speed up the time-consuming phase-encoding

● If we subsample by a rate of 2 in the phase-encoding, it causes a two-folded image 

when the inverse Fourier transform is taken (aliasing)

● The neural network needs to learn an unfolding map, however, an unfolding map will 

give the same result for two images which have an artifact that may only slightly differ 

in location from one image to the other

● This is called the separability problem

● The above problem can be addresses by adding some low frequency data which 

captures the numerous anomalies that form a crucial part of the MRI data and help in 

achieving separability in conditions such as above



Image Reconstruction
● The paper first investigates the zero-filled reconstruction (minimum norm solution) 

which is not practically useful in most cases

● The UNET is then used to filled the zeroes present at the unacquired locations to 

generate the reconstruction

● Finally, the acquired data may get distorted by the UNET, so it is overwritten by the 

original acquired data, a process which the paper refers to as k-space correction

● The mean MSE and mean SSIM are used as evaluation metrics which quantitatively 

validate the performance of UNET and also show the significant effects which are 

caused by k-space correction

● The high representativeness of the learned function is demonstrated by its flexibility 

as it gives good results on CT images as well on which it has never been trained



The architecture is summarized in this 

image. The zero padded k-space image is 

converted to spatial domain, passed 

through UNET and then k-space 

correction is performed. The UNET 

consists of two parts: the contracting 

network which performs down 

convolution and pooling, and the 

expanding part which performs 

upconvolution. The two parts are 

connected using skip connections.

Picture Credits: Chang Min Hyun, Hwa Pyung Kim, Sung Min Lee, Sungchul 
Lee, Jin Keun Seo, Deep learning for undersampled MRI reconstruction 



Bayesian Approaches

● So far, the papers we have seen focus on the reconstruction of undersampled MRI 

images without any theoretical guarantees on the performance of these models

● The Bayesian approach models uncertainty associated with the performance of the 

model and the analysis is done over the following 2 kinds of uncertainty

○ Epistemic Uncertainty modeled by MC-dropout

○ Aleatoric Uncertainty modeled heteroscedastic loss

● Aleatoric Uncertainty refers to the irreducible uncertainty which is present in the 

data (measurement noise, aliasing pattern, artifacting)

● Epistemic Uncertainty refers to the fact that given a dataset there are more than one 

set of parameters for any given architecture which can faithfully reconstruct the data

● The above framework has been applied to the DC-CNN and UNET architectures



The architectures which were used by the Bayesian Deep Learning Paradigm. Notice the two variants of 

DC-CNN where the feature maps are taken from different locations to learn the uncertainty map.

Similarly, for UNET, the mean and the uncertainty map share the same encoder but a different decoder.

Picture Credits: Jo Schlemper, Daniel C. Castro, Wenjia Bai, Chen Qin, Ozan 
Oktay, Jinming Duan, Anthony N. Price, Jo Hajnal, Daniel Rueckert, Bayesian 
Deep Learning for Accelerated MR Image Reconstruction



Implementation and Analysis Work

● The work done after extensive literature survey on this topic focussed on further 

exploring the capabilities of Deep Learning frameworks in MRI reconstruction 

problem

● A three stage architecture is with end-to-end learning, which can be understood in 

the following 3 stages:

○ The first stage consisting of a CNN which fills in missing k-space data using the 

the data which has been acquired in the spatiotemporal neighbourhood

○ The second stage takes the data from k-space to spatial domain by the use of an 

inverse Fourier transform

○ The third stage uses a CNN learned for image quality enhancement in the 

spatiotemporal domain

● Uncertainty estimation makes the learning robust to large physiological fluctuations



Detailed Framework

● For the first stage of the network, the CNN receives the zero-filled k-space matrix for 

all time points for which acquisition has been done

● The images is divided into left and right halves and the set of weights for both these 

halves are trained separately 

● The next stage takes the still temporally undersampled images which now have all the 

k-space entries filled and applies the inverse Fourier transform to them

● At this stage, the temporal interpolation is done (linear interpolation is done to keep 

the computational cost low) and this is passed on as input to the third stage

● A third stage of convolutional network which also involves residual mapping is used 

to model a Gaussian univariate wherein the mean represents the value of the pixel 

and the standard deviation gives an uncertainty map 



Types of Losses
● Experiments were done with various types of losses which have been described as 

follows:

○ Mean-Squared Error Loss: This is the standard framework common in many 

deep learning paradigms, however, in our formulation we specifically also 

penalize the error with respect to the timepoints that were acquired before 

passing them to the third stage of neural network

○ Robust Loss: This takes into account the fact that RS-fMRI images can be 

corrupted with heavy physiological noise and a more heavy tailed distribution 

compared to the Gaussian is required. The mean-squared error loss is derived 

from the assumption of Gaussian distribution, so we penalize the p-th power of 

the Frobenius norm instead to model a heavier tail

○ Bayesian Loss: This maximizes the a posteriori probability of the reconstruction; 

given the mean and standard deviation obtained from Bayesian variant of the 

CNN



Results
● The results were measured using the mSSIM (mean structural similarity) and are 

summarized in the graph below

● The results were taken over 4 models which had been implemented: Bayesian Deep 

CNN, Robust Deep CNN, Deep CNN and Shallow CNN where the last two variants 

use the mean-squared error



Future Work
● For the future, we are planning to explore the Expectation Maximization framework 

and integrate it into out setup

● Some preliminary reading regarding this has already been done

● Expectation Maximization is conventionally used in the unsupervised learning setup 

where in subsequent steps, the clustering centers are calculated and the a posteriori 

probability for a particular data point to belong to that cluster is maximized

● The posteriori probability is calculated on the basis of the estimate of a joint 

probability of latent space variables and the actual data

● This can be integrated into the reconstruction framework by working with the 

reconstruction problem in a latent manifold which turns out to be valid assumption in 

the case of RS-fMRI

● However, the setup is still raw and may require some further rigour before it can be 

used as formal problem-solving framework
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