

Indian Institute of Technology Bombay
Department of Electrical Engineering
EE-309: Microprocessors

Course Project 1

Design a 6 stage pipelined processor, IITB-RISC, whose instruction set architecture is provided.
IITB-RISC is a 16-bit very simple computer developed for the teaching purpose. The IITB-RISC is
an 8-register, 16-bit computer system. It should follow the standard 6 stage pipelines
(Instruction fetch, instruction decode, register read, execute, memory access, and write back).
The architecture should be optimized for performance, i.e., should include hazard mitigation
techniques. Hence, it should have at least data forwarding mechanism.

Max. Group Size: FOUR

Submission deadlines:

Oct 26 - 30 (Saturday - Wednesday): Design review

Full design description with forwarding (on paper).

Nov 02 (Saturday): FIRM

 VHDL code of the design. Simulation results and testbench.

Nov 06 (Wednesday): FIRM

 FPGA implementation of the design and final report

IITB-RISC Instruction Set Architecture

IITB-RISC is a 16-bit very simple computer developed for the teaching that is based on the Little
Computer Architecture. The IITB-RISC is an 8-register, 16-bit computer system. It has 8 general-purpose
registers (R0 to R7). Register R7 is always stores Program Counter. PC points to the next instruction. All
addresses are short word addresses (i.e. address 0 corresponds to the first two bytes of main memory,
address 1 corresponds to the second two bytes of main memory, etc.). This architecture uses condition
code register which has two flags Carry flag (c) and Zero flag (z). The IITB-RISC is very simple, but it is
general enough to solve complex problems. The architecture allows predicated instruction execution
and multiple load and store execution. There are three machine-code instruction formats (R, I, and J
type) and a total of 14 instructions. They are illustrated in the figure below.

R Type Instruction format

Opcode

(4 bit)

Register A (RA)

(3 bit)

Register B (RB)

(3-bit)

Register C (RC)

(3-bit)

Unused

(1 bit)

Condition (CZ)

(2 bit)

I Type Instruction format

Opcode

(4 bit)

Register A (RA)

(3 bit)

Register C (RC)

(3-bit)

Immediate

(6 bits signed)

J Type Instruction format

Opcode

(4 bit)

Register A (RA)

(3 bit)

Immediate

(9 bits signed)

Instructions Encoding:

ADD: 00_00 RA RB RC 0 00

ADC: 00_00 RA RB RC 0 10

ADZ: 00_00 RA RB RC 0 01

ADI: 00_01 RA RB 6 bit Immediate

NDU: 00_10 RA RB RC 0 00

NDC: 00_10 RA RB RC 0 10

NDZ: 00_10 RA RB RC 0 01

LHI: 00_11 RA 9 bit Immediate

LW: 01_00 RA RB 6 bit Immediate

SW: 01_01 RA RB 6 bit Immediate

LM: 01_10 RA 0 + 8 bits corresponding to Reg R7 to R0

SM: 01_11 RA 0 + 8 bits corresponding to Reg R7 to R0

BEQ: 11_00 RA RB 6 bit Immediate

JAL: 10_00 RA 9 bit Immediate offset

JLR: 10_01 RA RB 000_000

RA: Register A

RB: Register B

RC: Register C

Instruction Description

Mnemonic Name & Format Assembly Action

ADD ADD (R) add rc, ra, rb Add content of regB to regA and store result in
regC.

It modifies C and Z flags

ADC Add if carry set

(R)

adc rc, ra, rb Add content of regB to regA and store result in
regC, if carry flag is set.

It modifies C & Z flags

ADZ Add if zero set

(R)

adz rc, ra, rb Add content of regB to regA and store result in
regC, if zero flag is set.

It modifies C & Z flags

ADI Add immediate

(I)

adi rb, ra, imm6 Add content of regA with Imm (sign extended)
and store result in regB.

It modifies C and Z flags

NDU Nand

(R)

ndu rc, ra, rb NAND the content of regB to regA and store
result in regC.

It modifies Z flag

NDC Nand if carry set

(R)

ndc rc, ra, rb NAND the content of regB to regA and store
result in regC if carry flag is set.

It modifies Z flag

NDZ Nand if zero set

(R)

ndc rc, ra, rb NAND the content of regB to regA and store
result in regC if zero flag is set. It modifies Z flag

LHI Load higher
immediate (J)

lhi ra, Imm Place 9 bits immediate into most significant 9 bits
of register A (RA) and lower 7 bits are assigned to
zero.

LW Load

(I)

lw ra, rb, Imm Load value from memory into reg A. Memory
address is computed by adding immediate 6 bits
with content of reg B.

It modifies flag Z.

SW Store

(I)

sw ra, rb, Imm Store value from reg A into memory. Memory
address is formed by adding immediate 6 bits
with content of red B.

LM Load multiple

(J)

lm ra, Imm Load multiple registers whose address is given in
the immediate field (one bit per register, R7 to
R0) in order from right to left, i.e., registers from
R0 to R7 if corresponding bit is set. Memory
address is given in reg A. Registers are loaded
from consecutive addresses.

SM Store multiple

(J)

sm, ra, Imm Store multiple registers whose address is given in
the immediate field (one bit per register, R7 to
R0) in order from right to left, i.e., registers from
R0 to R7 if corresponding bit is set. Memory
address is given in reg A. Registers are stored to
consecutive addresses.

BEQ Branch on Equality

(I)

beq ra, rb, Imm If content of reg A and regB are the same, branch
to PC+Imm, where PC is the address of beq
instruction

JAL Jump and Link

(I)

jalr ra, Imm Branch to the address PC+ Imm.

Store PC into regA, where PC is the address of
the jalr instruction

JLR Jump and Link to
Register

(I)

jalr ra, rb Branch to the address in regB.

Store PC into regA, where PC is the address of
the jalr instruction

